Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework
نویسندگان
چکیده
This study introduces the Borg multi-objective evolutionary algorithm (MOEA) for many-objective, multimodal optimization. The Borg MOEA combines ε-dominance, a measure of convergence speed named ε-progress, randomized restarts, and auto-adaptive multioperator recombination into a unified optimization framework. A comparative study on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites demonstrates Borg meets or exceeds six state of the art MOEAs on the majority of the tested problems. The performance for each test problem is evaluated using a 1,000 point Latin hypercube sampling of each algorithm's feasible parameterization space. The statistical performance of every sampled MOEA parameterization is evaluated using 50 replicate random seed trials. The Borg MOEA is not a single algorithm; instead it represents a class of algorithms whose operators are adaptively selected based on the problem. The adaptive discovery of key operators is of particular importance for benchmarking how variation operators enhance search for complex many-objective problems.
منابع مشابه
Confronting tipping points: Can multi-objective evolutionary algorithms discover pollution control tradeoffs given environmental thresholds?
This study contributes a stochastic, multi-objective adaptation of the classic environmental economics Lake Problem as a computationally simple but mathematically challenging benchmarking problem. The Lake Problem considers a hypothetical town by a lake, which hopes to maximize its economic benefit without crossing a nonlinear, and potentially irreversible, pollution threshold. Optimization obj...
متن کاملEvolutionary Design of Agent-based Simulation Experiments (Demonstration)
We present CASE (complex adaptive systems evolver), a framework devised to conduct the design of agent-based simulation experiments using evolutionary computation techniques. This framework enables one to optimize complex agent-based systems, to exhibit pre-specified behavior of interest, through the use of multi-objective evolutionary algorithms and cloud computing facilities.
متن کاملAn Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling
With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...
متن کاملAn Effective Task Scheduling Framework for Cloud Computing using NSGA-II
Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolutionary computation
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2013